
# Thin Film Growth and Evolution

## Thin Film Techniques

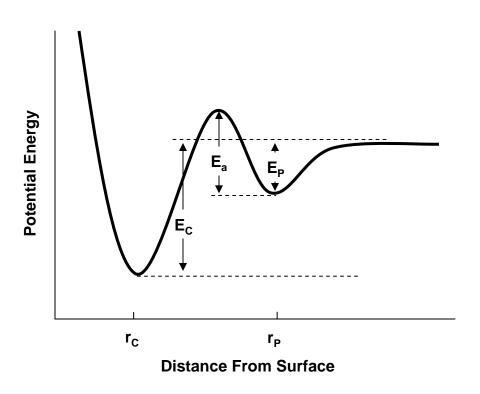
| Process                | Material                                          | Uniformity | Impurity | Grain Size     | Film<br>Density | Deposition<br>Rate                               | Substrate<br>Temperature | Directional    | Cost      |
|------------------------|---------------------------------------------------|------------|----------|----------------|-----------------|--------------------------------------------------|--------------------------|----------------|-----------|
| Thermal<br>Evaporation | Metal or<br>low<br>melting-<br>point<br>materials | Poor       | High     | 10 ~ 100<br>nm | Poor            | 1 ~ 20 A/s                                       | 50 ~ 100 °C              | Yes            | Very low  |
| E-beam<br>Evaporation  | Both metal<br>and<br>dielectrics                  | Poor       | Low      | 10 ~ 100<br>nm | Poor            | 10 ~ 100 A/s                                     | 50 ~ 100 °C              | Yes            | High      |
| Sputtering             | Both metal<br>and<br>dielectrics                  | Very good  | Low      | ~ 10 nm        | Good            | Metal:<br>~ 100 A/s<br>Dielectric:<br>~ 1-10 A/s | ~ 200 °C                 | Some<br>degree | High      |
| PECVD                  | Mainly<br>Dielectrics                             | Good       | Very low | 10 ~ 100<br>nm | Good            | 10 - 100 A/s                                     | 200 ~ 300 °C             | Some<br>degree | Very High |
| LPCVD                  | Mainly<br>Dielectrics                             | Very Good  | Very low | 1 ~ 10 nm      | Excellent       | 10 - 100 A/s                                     | 600 ~ 1200 °C            | Isotropic      | Very High |

## Steps of Thin Film Growth

- 1. Absorption (physisorption)
- 2. Surface diffusion
- 3. Chemical bond formation (chemisorption)
  - Molecule-molecule
  - Substrate-molecule
- 4. Nucleation
- 5. Microstructure formation
  - Crystal structure
  - Defects
- 6. Bulk changes
  - Diffusion
  - Grain growth



## Physisorption


- An approaching atom can either be
  - reflected or
  - absorbed
  - on to the surface of the substrate.
- The process is dependent on
  - the incoming flux of atoms
  - the trapping probability
  - the sticking coefficient

#### **Energy Barriers**

- Once physisorbed, the atom can be chemisorbed or desorbed (ejected).
- Both physisorption and chemisorption have to overcome local energy barriers.

$$k_r = v \exp\left(\frac{-E_b}{kT}\right)$$

$$\tau_r = \frac{1}{k_r} = \frac{1}{v} \exp\left(\frac{E_b}{kT}\right)$$



#### Adsorption Effects

- Whether physical or chemical, adsorption is counterbalanced by desorption.
- If P is the partial pressure of the atoms in the vapor phase and k<sub>ads</sub> and k<sub>des</sub> the adsorption and desorption rates, then the surface coverage percentage, θ, as a function of time is,

$$\theta = \frac{KP}{1 + KP} \left\{ 1 - \exp\left[-k_{des} \left(1 + KP\right)t\right] \right\} \qquad K = \frac{k_{ads}}{k_{des}}$$

 If KP >> 1 then coverage is unity. At very long times, the equilibrium coverage is,

$$\theta = \frac{KP}{1 + KP}$$

#### Surface Energy

- Once an atom sticks to the surface, it creates a tension (energy) in the surface.
- It is due to the surface atoms stretching their bonds in response to the absorption of the atom.
- It is a function of the broken bond energy of exposed surface atoms which depends on the crystal structure of the substrate.

#### Surface Diffusion

- Overall surface energy can be minimized if the atom has enough energy and time to diffuse to a low energy site.
- The diffusion rate increases with temperature.
- A diffusion length can be defined as:

$$\Lambda = a\sqrt{k_s t}$$

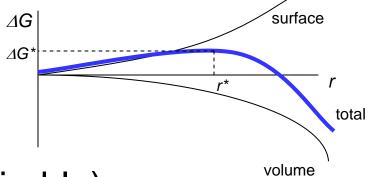
where  $k_s$  is the diffusion rate, t is diffusion time and a is the hop distance.

#### Peak in Surface Diffusion

- At low temperatures, the diffusion length increases with temperature.
- At higher temperatures, the desorption rate also increases and overtakes absorption. Therefore, the diffusion length decreases.
- Typical diffusion lengths:
  - Physisorption : 300  $\mu$ m
  - Chemisorption : 5 nm

#### From Atom to Film

- Since adding an atom to the surface creates extra surface energy, there must be a driving force to overcome this barrier.
- The exact nature depends on the deposition technique:
  - PVD: The atom or molecule should have a lower chemical potential as a condensate than as a vapor.
  - CVD: The solid form should be thermodynamically predicted over the gas form.


#### **Nucleation**

- For a stable film, nuclei at a critical size are needed.
- For "embryos" smaller than this, the surface energy is too large and the overall reaction is thermodynamically unfavorable.
- A stable embryo is one which adding more molecules decreases the Gibb's free energy.

## **Nucleation Types**

- Homogeneous (undesirable)
  - The free energy of the atoms in free standing (gas) form is smaller when they nucleate.

$$\Delta G_{total} = \frac{4}{3} \pi r^3 \Delta G_v + 4 \pi r^2 \gamma$$



- Heterogeneous (desirable)
  - Nucleation on the substrate surface in solid form reduces the surface energy by reducing the surface area.

#### Heterogeneous Nucleation

- Nucleation depends on the relative surface energies of the various interfaces:
  - Substrate-vapor
  - Film-substrate
  - Film-vapor



$$\Delta G_{total} = a_3 r^3 \Delta G_v + a_1 r^2 \gamma_{fv} + a_2 r^2 \gamma_{fs} - a_2 r^2 \gamma_{sv}$$

 It has a barrier behavior similar to homogeneous nucleation with a critical radius and energy.

$$r^* = \frac{-2(a_1 \gamma_{fv} + a_2 \gamma_{fs} - a_2 \gamma_{sv})}{3a_3 \Delta G_v}$$
$$\Delta G^* = \frac{16\pi (\gamma_{fv})^3}{3(\Delta G_v)^2} \left\{ \frac{2 - 3\cos\theta + \cos^3\theta}{4} \right\}$$

## Dependence of Nucleation on Growth Parameters

- Substrate Temperature
  - The critical nuclei size increases with temperature.
  - The barrier for nucleation is greater with increasing temperature.
- Deposition Rate
  - The critical nuclei size decreases with increasing deposition rate.
  - The barrier for nucleation is smaller with increasing deposition rate.

#### Frank van der Merwe (Layers)

- If the substrate-vapor surface energy is larger than the other two combined.
- A smooth film will form.
- Layered growth will occur.
- The film wets the surface to lower surface energy.



#### Volmer Weber (Islands)

- The total surface energy of the film interfaces is larger than that of the substrate-vapor interface.
- The material balls up to minimize interface with the substrate.
- Uneven growth.
- Slow diffusion.

#### Stranski-Krastanov (mixed)

- Initial layer growth.
- Changes into island growth after a few monolayers.
- The initial layer is strained to match the substrate. After a few layers, the strain is relaxed.



#### Kinetics of Nucleation

The nucleation rate is a product of three terms.

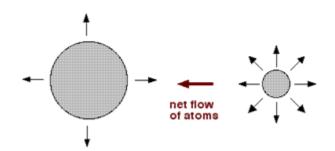
$$\stackrel{\bullet}{N} = N^* A^* \omega$$

where  $N^*$  is the equilibrium concentration of the stable nuclei,  $\omega$  is the rate at which atoms impinge on to the nuclei of critical area  $A^*$ .

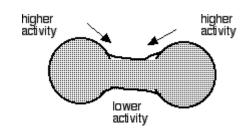
$$N^* = n_s \exp(-\Delta G^*/k_B T)$$

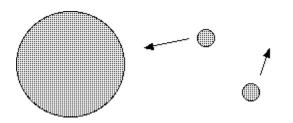
$$A^* = 4\pi (r^*)^2$$

$$\omega = \frac{\alpha (P_V - P_S) N_A}{\sqrt{2\pi MRT}}$$


where  $\alpha$  is the sticking coefficient,  $N_A$  is the Avogadro's number and M is the atomic weight

#### Microstructure


- Higher substrate temperatures favor fewer, larger nuclei.
- Higher deposition rates favor more, smaller nuclei.
- To get single crystal or large grained polycrystalline films, you need higher temperatures and slower deposition rates.
- On the other extreme, you'll get fine grained polycrystalline films.


#### **Nuclei Combination**

- Ostwald Ripening
  - Small particles shrink, large ones grow.



- Sintering
  - A neck forms between two growing nuclei.
  - The neck's curvature allows for faster growth and merging.
- Cluster Coalescence
  - Nuclei also undergo surface diffusion
  - When it is chemically favorable for two nuclei to align and stay permanently at a location, they merge.





## Film Morphology

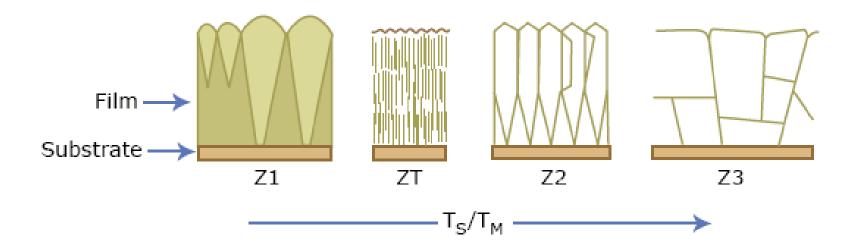
- The nucleation and the subsequent combination of the nuclei lead to a final film microstructure.
- This morphology is influenced by:
  - Substrate temperature
  - Deposition rate
  - Geometry
  - Desorption
  - Bulk and surface diffusion
- Generally, four different classes of film morphology exist.

## Film Morphology: Z1

- Conditions:
  - T<sub>s</sub>/T<sub>m</sub> low, little surface diffusion
  - Evaporation:  $T_s/T_m < 0.3$
  - Sputtering
    - T<sub>s</sub>/T<sub>m</sub> < 0.1 at lower pressure
    - T<sub>s</sub>/T<sub>m</sub> < 0.4 at higher pressure
- Small diameter (~ 10nm) columns with poor crystallinity or amorphous structure
- Columns have voided boundaries.
- Dome tops above columns
- Created by surface roughness, line of site deposition
- High dislocation density leading to a hard material.

## Film Morphology: ZT

- Conditions:
  - Sputtering only
    - $0.1 < T_s/T_m < 0.4$  at lower pressure
    - $0.4 < T_s/T_m < 0.5$  at higher pressure
- Voids and domes are reduced
- The columns have fibrous grains and dense grain boundaries.
- Still high dislocation density leading to a hard material.


## Film Morphology: Z2

- Conditions:
  - Surface diffusion is becoming important.
  - Evaporation
    - $0.3 < T_s/T_m < 0.5$
  - Sputtering
    - $0.4 < T_s/T_m < 0.7$
- Columns with tight grain boundaries. Voids are filled by surface diffusion.
- Fewer defects.
- Faceted column tops.

## Film Morphology: Z3

- Conditions:
  - Surface diffusion is high to allow for annealing.
  - Evaporation
    - $T_s/T_m > 0.5$
  - Sputtering
    - $0.6 < T_s/T_m < 1$
- Preferred grains grow at the expense of others, leading to large grains.
- Smoother surfaces.
- Fewer dislocations leading to softer films.

## Morphology Summary

